Accelerated Probabilistic Power Flow in Electrical Distribution Networks via Model Order Reduction and Neumann Series Expansion

نویسندگان

چکیده

This paper develops a computationally efficient algorithm which speeds up the probabilistic power flow (PPF) problem by exploiting inherently low-rank nature of voltage profile in electrical distribution networks. The is accordingly termed Accelerated-PPF (APPF), since it can accelerate “any” sampling-based PPF solver. As APPF runs, concurrently generates low-dimensional subspace orthonormalized solution vectors. used to construct and update reduced order model (ROM) full nonlinear system, resulting highly simulation for future profiles. When constructing updating subspace, must still be solved on system. In computation these solutions, Neumann expansion modified Jacobian implemented. Applicable when load bus injections are small, this allows considerable speed system solves during standard Newton iterations. test results, from experiments run IEEE 8500-node feeder, finally presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

fault location in power distribution networks using matching algorithm

چکیده رساله/پایان نامه : تاکنون روش‏های متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روش‏ها در شبکه توزیع به دلایلی همچون وجود انشعاب‏های متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تک‏فاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...

Damage identification of structures using second-order approximation of Neumann series expansion

In this paper, a novel approach proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). As the number of sensors used to measure modal data is normally limited and usually are less than the number of DOFs in the finite element model, the model reduction approach should be used to match with incomplete measured mode shapes. The second-order a...

متن کامل

Stochastic Second-Order Optimization via von Neumann Series

A stochastic iterative algorithm approximating second-order information using von Neumann series is discussed. We present convergence guarantees for stronglyconvex and smooth functions. Our analysis is much simpler in contrast to a similar algorithm and its analysis, LISSA. The algorithm is primarily suitable for training large scale linear models, where the number of data points is very large....

متن کامل

Probabilistic hydrogen, thermal and electrical management of PEM-fuel cell power plants in distribution networks

This paper presents a Stochastic Multi-objective Optimal Operation Management (SMOOM) framework of distribution networks in presence of PEM-Fuel Cell Power Plants (FCPPs) and boilers. Operational costs, thermal recovery, power trade with grid and hydrogen management strategies are considered in this model. Furthermore, four objective functions has been considered as criteria for SMOOM, i.e. ele...

متن کامل

Model Order Reduction for Rotating Electrical Machines

The simulation of electric rotating machines is both computationally expensive and memory intensive. To overcome these costs, model order reduction techniques can be applied. The focus of this contribution is especially on machines that contain non-symmetric components. These are usually introduced during the mass production process and are modeled by small perturbations in the geometry (e.g., ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Power Systems

سال: 2022

ISSN: ['0885-8950', '1558-0679']

DOI: https://doi.org/10.1109/tpwrs.2021.3120911